
	
	Peer Review Notice

	
	General

	
	Project Name:
	ECS Synergy IV
	
	Notice Date:
	08/04/2003

	
	Called By:
	Adrienne Dupree
	
	Review Date/Time:
	08/07/2003 10:00-12:00

	
	Reinspection?:
	
	
	Meeting Location:
	2123
	

	
	Review Type:
	Inspection:
	X
	
	
	
	

	
	
	Routing:
	
	
	
	
	

	
	
	Walkthrough:
	
	
	
	
	

	Overview Meeting

	
	Date/Time:
	
	
	Location:
	
	
	

	
	
	
	
	
	
	
	

	Subject

	
	Product Type:
	Detailed Design
	
	Release:
	6A
	
	

	
	Product Name:
	Webaccess support of media distribution
	
	Detection Stage:
	Preliminary Design
	

	
	Size:
	49
	
	Unit (SLOC, #pages):
	#pages
	

	
	
	
	
	
	
	
	

	Participants

	Role
	Name
	Perspective
	Phone

	Author
	Di Kang, Keith Bryant
	
	Development
	
	X0081
	X1126

	Technical Leader
	Premsagar Gazula
	
	Development
	
	x4140
	

	Review Leader
	Adrienne Dupree
	
	Development
	
	x0523
	

	Software Quality
	Carla Baglione
	
	QO
	
	x0329
	

	Reviewer
	Keith Bryant
	
	Development
	
	X1126
	

	Reviewer
	Sophia Yu
	
	Development
	
	X1042
	

	Reviewer
	John Farley
	
	Development
	
	X1115
	

	Reviewer
	Harold Colglazier
	
	Development
	
	X0484
	

	Reviewer
	Mike O’Brien
	
	Development
	
	X4159
	

	Reviewer
	Yuelan Li
	
	Development
	
	x0766
	

	Reviewer
	Doug Newman
	
	Development
	
	
	

	Reviewer
	Richard Meyer
	
	AO
	
	x0430
	

	Reviewer
	Cristina Bories
	
	Development
	
	X0547
	

	Reviewer
	Ken Prickett
	
	M&O
	
	x1039
	

	Reviewer
	Kathy Carr
	
	Architecture
	
	x4173
	

	Reviewer
	Lisa Pann
	
	Development
	
	X0544
	

	Reviewer
	Wei Yang
	
	Development
	
	x4027
	

	Reviewer
	Joan Rattigan
	
	IT
	
	x0771
	

	
	
	
	
	
	
	
	

	Agenda: (Topics and Estimated Duration)
	
	
	
	
	

	1.
	
	6.
	
	
	
	

	2.
	
	
	7.
	
	
	
	

	3.
	
	
	8.
	
	
	
	

	4.
	
	
	9.
	
	
	
	

	5.
	
	
	10.
	
	
	
	

	
	
	
	
	
	
	
	

	(for logging defects to be returned to the leader and to signify ready for an inspection)

	General

	
	
	Project Name:
	ECS Synergy IV
	Notice Date:
	08/04/2003

	
	
	Called By:
	Adrienne Dupree
	Review Date/Time:
	08/07/2003 10-12

	
	
	Review Type:
	Preliminary design
	Meeting Location:
	2123

	
	
	Reinspection?:
	Inspection: x
	
	

	
	
	
	
	
	

	Subject

	
	
	Product Form:
	Preliminary Design
	Release:
	6A

	
	
	Product Name:
	WebAccess support of media distribution
	Detection Stage:
	Preliminary Design

	
	
	Size:
	49
	Unit (SLOC, #pages):
	# pages

	
	
	
	
	
	

	Reviewer Info

	
	
	
	
	
	

	
	
	Reviewer's Name:
	
	Phone:
	

	
	
	Date Package Received:
	
	Prep Hours:
	

	
	
	
	
	
	

	Defects/Concerns

	
	Page
	Location
	Description
	

	1.
	
	
	

	
	
	
	

	2.
	
	
	

	
	
	
	

	3.
	
	
	

	Return this form to the Review Leader at least 4 hours before the scheduled review meeting with the approprate box checked below.

	
	

	
	
	Yes, I am prepared for the review.

	
	
	No, I am not ready for the review.

	
	

Pre-Design Peer Review Checklist

	[]
	Verified that the “Peer Review Report” from the previous stage has been signed.

	[]
	The L3s in the L3 matrix were obtained from the System’s Engineering Requirements baseline and mapped to the design components.

	[x]
	The Rational Rose models, if applicable, are located in the designated place for the subsystem (i.e. NOT in the user’s home directory).

	
	The review material for both preliminary and detailed design contains the following:

	[]
	L3 and L4 requirements and traceability matrix showing mapping of requirements to the component level (CSC). This includes only the requirements being addressed by the design currently being reviewed.

	[]
	.sitemap updates. The .sitemap is the file that controls which hosts the custom software gets deployed to.

	[x]
	Use Case Scenarios and Diagrams. A diagram of a high-level use case is provided with lower levels documented in text form (if applicable).

	[x]
	Class Diagrams, including annotations (if applicable).

	[x]
	Sequence Diagrams (if applicable).

	[]
	Interface Definitions (313 Release x Internal ICD) – applicable sections only.

	[]
	Integration Test Plan

	[x]
	Work Package Definition (SLOC, Resource Estimate)

	[]
	Applicable 305 (Release x Segment/Design Specification) sections

	[]
	Applicable 609 (Release x Operations Tools Manual) sections

	[x]
	GUI mockups (if applicable). Updates can be as part of the 609 changes (screen dumps) or mockups in something like PowerPoint.

	[]
	Function calling structure (if applicable). The function calling structure is used by Perl applications to define the purpose of the functions and to list the functions and stored procedures that are called.

	[x]
	Stored procedure calling structure and database tables accessed (if applicable). This describes the purpose of the stored procedure as well as the other stored procedures called and database tables accessed.

	
	The review material for detailed design includes the following in addition to the list above.

	[]
	Semantic (PDL) – Refer to the ECS Program Design Language Guidelines (SD-1-011) for the list of the types of methods that require PDL. Alternative is to provide State Transition Diagrams. This can be determined by the Technical Lead on a peer review by peer review basis.

	[]
	Integration Test Plan and Procedures

	[]
	Unit Test Plans (if applicable)

	[]
	Database changes (if applicable). This includes all artifacts that go into 311

 Synergy IV (OD_S4_01)

Webaccess – Support of Media Distribution

Raytheon Systems Company
Upper Marlboro, Maryland

Webaccess Support of Media Distribution

Responsible Engineer

8/4/03

Di Kang
Date

APPROVED BY

Adrienne Dupree
Date

Raytheon Systems Company
Upper Marlboro, Maryland

Contents

11
Introduction

1.1
Purpose of Document
1
1.2
Documentation Organization
1
2
Requirements
2
3
WEB GUI mockup
5

3.1
GUI Flow
5

3.2
Mockups
6
4
Architecture
13

4.1
Overview
13
5
Software Design
15
5.1
Introduction
15
5.2
Use Case
15
5.3
Class Diagrams
18
5.3.1
Webaccess package
19

5.3.2
Drill
18
5.3.3
Webtier
20

5.3.4
Actions
24

5.3.5
Cart
28

5.3.6
Util
30

5.3.7
Drill
31

5.4
Sequence Diagrams
32
5.4.1
Check Media
32

5.4.2
Set User Profile
33

5.4.3
Submit Order
34

6
Database OPERATIONS
35
6.1
Overview
35
6.2
Databse Operations
35
6.2.1
DPL Databse
35

6.2.2
OMS Database
35

7
SLOC ESTIMATES
38

8
Test Plan
39

List of Figures

Figure 1. Shopping Cart GUI Flow
5

Figure 2. Result page
6

Figure 3. Media warning page
7

Figure 4. Shopping cart page
8

Figure 5. Checkout page
9

Figure 6. Media order confirm page (upper half)
10

Figure 7. Media order confirm page (lower half)
11

Figure 8. Media order acknowledgement page
12

Figure 9. Architecture design
14

Figure 10. Use case diagram
15

Figure 11. webaccess packages
18
Figure 12. drill package class diagram
19

Figure 13. webtier package class diagram
20

Figure 14. actions package class diagram
25

Figure 15. cart package class diagram
28

Figure 16. ordertracking package class diagram
30

Figure 17. util package class diagram
31
Figure 18. Sequence: check media
32
Figure 19. Sequence: set user profile
33
Figure 20. Sequence: submit order
34

List of Tables

1 Introduction

1.1 Purpose of Document

The purpose of this document is to describe the approach for the integration of webaccess with Order Manager Service, which supports the physical media distribution for web users. In Synergy III, webaccess allows users to order data via ftp-pull. This package will document how to let web users order data on physical media.

This document includes sections on architecture, the communication mechanism, DPL shopping cart and GUI layout. Note that this is a living document and some portions of it will be determined in the future. This document provides an overall description of the functioning of the shopping cart and it’s server-side support (database and middleware, etc.).

1.2 Documentation Organization

The contents of the document are as follows:

· Section 1. Introduction – introduces the webaccess media distribution document.

· Section 2. Requirements – lists requirements driving this design.

· Section 3. GUI Mockup – describes end user interface required to support the design.

· Section 4. Architecture – describes the high-level architecture approach.

· Section 5. Software design – describes the UML modeled software design.

· Section 6. Database Procedures – describes the interface between webaccess and OMS.

· Section Error! Reference source not found.. SLOC estimates – shows the estimated SLOC.

· Section 8. Test Plan – shows integration test criteria.

Requirements

These requirements are taken from ‘Improve Distribution to End Users through Data Pool’ ticket (OD_S4_01_v14).

	L4 ID
	L4 Text
	Crit
	L4 Release
	CCR Num

	S-DPL-x1010
	The Data Pool Web Access Service shall allow users to order the granules in the shopping cart for distribution via any of the physical media offered by ECS.

[NOTE: this is not intended to extend to HEG orders. They will continue to be available only via FTP.]
	110
	Synergy IV
	

	S-DPL-x1020
	The Data Pool Web Access Service shall allow the user to include in or exclude from the order the XML metadata files for the granules in the shopping cart.
	110
	Synergy IV
	

	S-DPL-x1030
	The Data Pool Web Access Service shall require the user to enter an e-mail address of a maximum length of TBD characters for the order.

[Note: Maximum length to be resolved during preliminary design.]
	110
	Synergy IV
	

	S-DPL-x1040
	The Data Pool Web Access Service shall allow the user to provide a contact address for the order, compatible with the corresponding MSS data elements.
	110
	Synergy IV
	

	S-DPL-x1050
	The Data Pool Web Access Service shall allow the user to provide a string of a maximum length of 255 characters as identification or characterization of the order.

[Note: This will be used to fill the Userstring parameter that is available for each order, and will be included in the Distribution Notice associated with the order.]
	110
	Synergy IV
	

	S-DPL-x1060
	The Data Pool Web Access Service shall assume a distribution priority of NORMAL for the order.
	110
	Synergy IV
	

	S-DPL-x1070
	The Data Pool Web Access Service shall allow the user to select a valid ECS physical media type for the order.
	110
	Synergy IV
	

	S-DPL-x1080
	The Data Pool Web Access Service shall require the user to provide the shipping information for the order, compatible with the corresponding MSS data elements.
	110
	Synergy IV
	

	S-DPL-x1090
	The Data Pool Web Access Service shall warn the user if the distribution request exceeds any of the configured request limits.
	122
	Synergy IV
	

	S-DPL-x1095
	The Data Pool Web Access Service shall make media types unavailable as choices if the contents of the shopping cart exceed one of their request limits (e.g., media too small or order exceeds maximum order size for that media type).

[Note: This could result in no media type being available if the order is too large.]
	124, 125
	Synergy IV
	

	S-DPL-x1096
	The Data Pool Web Access Service shall make media types unavailable as choices if the contents of the shopping cart is less than the minimum request size for that media type (i.e., request is too small).

[Note: This could result in no media type being available if the order is too small. This also will require the addition of a “Minimum Request Size” configuration parameter for each media type.]
	124
	Synergy IV
	

	S-DPL-x1098
	The Data Pool Web Access Service shall verify that all granules in a shopping cart are still in the Data Pool before submitting the order, and not submit the order and return an appropriate error indication flagging the unavailable granule(s) if that is the case.
	126
	Synergy IV
	

	S-DPL-x1100
	The Data Pool Web Access Service shall submit a data distribution request for the ordered granules and files to the OMS Database.

[Note: The interface must employ the OMS stored procedures for request submission.]
	110
	Synergy IV
	

	S-DPL-x1110
	The Data Pool Web Access Service shall empty the shopping cart after the data distribution request was successfully submitted to the OMS Database.
	110
	Synergy IV
	

	S-DPL-x1120
	The Data Pool Web Access Service shall display the assigned MSS order ID and the order status to the user after the data distribution request was successfully submitted to the OMS Database.
	110
	Synergy IV
	

	S-DPL-x1130
	The Data Pool Web Access Service shall permit a user to obtain the current status of an order in a form that is meaningful to the user.

[Note: The last phrase means that there needs to be a translation from MSS states to the status displayed to the user. The mapping from MSS state to status values displayed to a user is TBD by the preliminary design. Candidate values are: QUEUED; IN PROGRESS; SHIPPED; FAILED.

It was agreed that the user would need to provide an order Id and for verification purposes, a matching Email address to obtain the order status.]
	110
	Synergy IV
	

	S-DPL-x1140
	The Data Pool Web Access Service shall permit a user to bookmark the page displaying the order ID and status such that the user can use the bookmark later to obtain a current status of the order.
	110
	Synergy IV
	

	S-DPL-x1160
	The Data Pool Web Access Service shall display a meaningful error message to the user if the submission of the order into the OMS Database failed.

[Note: The error messages must be reviewed with the DAACs during preliminary design]
	120
	Synergy IV
	

	S-DPL-x1170
	The Data Pool Web Access Service shall allow a user to resubmit an order for a shopping cart if the submission of the order to the OMS Database failed.
	120
	Synergy IV
	

	S-DPL-x1180
	When re-submitting a data distribution request, the Data Pool Web Access Service shall guard against duplicate order submission by employing the corresponding capability of the Order Management Service.
	N/a
	Synergy IV
	

	S-DPL-x1200
	The Data Pool Web Access Service shall exclude order only data from all web drill down results.

[Note: The requirement is satisfied by virtue of not populating the Data Pool inventory data that are used by drill down searches during insert of order only data.]
	50
	Synergy IV
	

2 GUI Mockup

2.1 GUI Flow

The basic shopping cart GUI flow is shown in the following diagram:

[image: image1.png]
Figure 1. Shopping cart GUI flow

Mockups

A web user can add any granule in the search result to the shopping cart. There is an ‘Add-to-Cart’ icon for each granule in the result page. The user can also add all granules in the results to the cart (figure 2).

[image: image2.png]
Figure 2 Result page

The shopping cart will check the order size against the media limits when the user adds granules. The warning message will be displayed if the order size is approaching the media limits (see figure 3).

[image: image3.png]
Figure 3 Media warning Page

The shopping cart page provides the user an interface to select HEG conversion parameters. The user can also remove granules from the cart. Whenever a granule is removed from the cart, the order size will also be checked against medium limits. The user will click on the “Select Media” button to go to the media page.

If the user selected any HEG parameters in the cart page, there will be only ftp-pull available in media page. If the user wants order on other media, s/he has to go back to the cart page to clear her/his HEG selections.

If the user just clicks on the “Select Media” button without any HEG selection, and if the user did not select a medium from previous media warning page, a media page (similar to the media warning page) will be displayed to request the user to select a medium.

[image: image4.png]
Figure 4 Shopping cart page

Once the user select a medium for the order (clicking on the OK button in media page), a user profile page (checkout page) will be shown for the user (figure 5). The user can input his/her contact/shipping info, comments, order request, etc in this page. The user can also go back to the cart page or to the media page to update granules and selected medium type.

[image: image5.png]
Figure 5 checkout page

If the user clicks on the “Confirm Order” button, an order confirmation page will be displayed (figures 6, 7). The user can click the buttons at the bottom to go back to cart page or checkout page to update his/her inputs.

[image: image6.png]
Figure 6 Media order confirm page (upper half)

[image: image7.png]
Figure 7 Media order confirm page (lower half)

If the user clicks on the “Submit Order” button, the shopping cart will insert the order parameters into OMS database. If the submission is failed, an error page will display to allow the user go back to the cart page or to submit later. If everything is ok, the order tracking server will show an acknowledgement page for the user (figure 8). At the same time, OMS should send the user an email to inform the user that the order was submitted normally.

[image: image8.png]
Figure 8 Media Order Acknowledgement Page

3 Architecture

3.1 Overview

In Synergy III, webaccess developed a shopping cart to allow web users to order HEG converted data via ftp-pull. In this package, we’ll extend the functionalities of the existing cart to allow users to order data via physical media. The integration of Webaccess with Order Manager Service (OMS) will allow Data Pool users (ECS GUESTs) to get Data Pool data on media. Webaccess will use OMS stored procedures to display standard ECS order options and to submit typical ECS orders. Note however that OMS will not support the ordering of HEG converted data on media. As such, all HEG converted data will continue to be ordered through the Data Pool ordering process only.

Webaccess provides the capability for Internet users to search data from Data Pool. The user can then add granules from his/her search results to a shopping cart.

The user can select a medium for data distribution. If the user selects ftp pull or the user want to convert granules using HEG tool, an order (or ftp order) will be submitted to HEG or webacesss packager. However, if the user wants to ship the data via a specific physical medium, an order (or physical media order) will be submitted to OMS – the shopping cart will insert the order request into OMS database. The media have a few limits to the order: the order should not be too large or too small comparing with the medium’s maximum and minimum sizes, and the number of granules in one order should not exceed the OMS request limits. The shopping cart will check the order with the media limits whenever the user adds or removes a granule. If the order is too large or too small for the media, the shopping cart will notice the user to do some changes (add or remove granules, change another medium, etc).

The user can input his/her user profile to the shopping cart via a profile GUI. The profile is required for OMS order.

The user can submit the order once he/she checks everything he/she entered into the form is correct. The shopping cart will insert the order parameters into OMS database using OMS stored procedures. OMS will set the order status and email the status back to the user. Webaccess Order Tracking server will extract this order status and display it to the user in an acknowledgment page.

The user can check his/her own order status at any time via the web order tracking interface.

Figure 9 shows the architecture design for above description.

[image: image16.png]
Figure 9 Architecture Design

Software Design

3.2 Introduction

This section describes the software components of WebAccess shopping cart that are involved in the integration with OMS – media checking and selection, order submission and order tracking. The use case describes the discrete actions within the system and it’s sub-components. The class diagram shows how new classes are related. The sequence diagrams describe the algorithms that will be used to handle user actions.

3.2.1 Use Case Diagram

[image: image9.png]
Figure 10 Use Case Diagram
Primary Actor: User – ECS GUEST

StakeHolders and Interests:

User: orders granules on physical media.

Servlet: supports production of pages

Order Manager: provides media information, also store order information and provide order status.

Preconditions:

User drills-down to result page, adds / removes granules with respect to the shopping cart.

Postconditons:

User's request has been submitted, stored in OMS database. And User is acknowledged.

Main Flow:

1. User drills down to result page with a few granules.

2. User clicks ‘Add-to-Cart’ icon to add granule into the shopping cart.

3. Server checks the order against max media limits.

4. If the order is too large or too many which approaching the media lower limits, user will see a warning page.

5. User can set off the warning page.

6. User views shopping cart.

7. User can remove granules from the cart. Whenever a granule is removed, the server checks the order against min media limits.

8. User selects a medium if the medium is not selected in the medium warning page, or user selects HEG conversion parameters. User is not allowed to select both of them.

9. User inputs user profile and other request information.

10. User can update all request information at any time. Server will check media limits whenever granules or medium type is updated.

11. User submits order. Server insert order information into OMS database.

12. Server gets the order status. User sees an acknowledgement page.

Alternate Flow:

1. Server sends an error message that the order submission is failed. The user can try again later.

3.3 Class Diagrams

3.3.1 Webaccess package

[image: image10.png]
Figure 11 webaccess packages

Six packages in webaccess need to be updated. The drill package will update 2 classes and 1 properties file. The webtier package adds 8 new classes and updates 4 classes. In webtier package, there is an action package, which adds 4 new classes and updates 2 existing classes. The util package updates one class. The cart package adds 5 new classes and modifies 2 existing classes. The ordertracking package is a new package that includes 2 new classes. The total are 19 new classes and 11 updated classes. The detail of them will be explained as following.

3.3.2 Drill

[image: image11.png]
Figure 12 drill package class diagram

There are minor changes in this package. WebInitializer and WebMediatorBean are two existing classes in drill package. The WebInitializer initializeDB method is modified to initialize an Order Manager database connection data source. The data source object will be put into webaccess application properties. All other classes can use the OMS data source stored in webaccess properties via WebMediatorBean getProperties method.

3.3.3 webtier

[image: image12.png]
Figure 13 webtier package class diagram

The webaccess package contains eight new classes and four updated classes that implement the servlet logics for the flow of web pages. All servlets extends from AbstractWebaccessServlet. They use beans to implement the session logics and talk to backend database access objects (DAOs). The servlets use associated helper classes to process user’s requests. These helper classes extend from AbstractServletHelper, the base helper class, and throw a ServletHelperException. The servlet will pick up an action object from the action package according to the user’s request action, and then let the action class to process user’s request.

AbstractWebaccessServlet (updated class): is the base servlet class, which implements the common methods for all webaccess classes. The initialContext method will be modified to put the new servlet urls into servlet context. The servlet templates will get all dynamic information from the servlet context.

CartServlet (no change): is the main servlet for the shopping cart.

GranuleRetrieverServlet (updated class): is used to display user’s searching result. The handleRequest method is modified to check distribution media limits whenever the user wants to add a granule to the cart order.

UserProfileServlet (new class): will process user’s information. This servlet will display a checkout page. The user can enter his/her profile and request (metadata, comments, etc) to the servlet. The handleRequest method will process user’s request, validate user’s information, or forward user to other page (e.g., cart page, media page, new search page, etc).

OrderTrackingServlet (new class): will help user to track the order status. It will also acknowledge user if the order is submitted successfully.

AbstractServletHelper and ServletHelperException classes (no change): All servlet helper classes will extends AbstractServletHelper class, and throw the exception of ServletHelperException. There are no changes in these two classes.

CartHelper (updated class): will take care of the detail logics in CartServlet. The determineAction method is modified to get the new actions in accordance to the user’s request for media order.

UserProfileHelper (new classes): will take car of the detail logics in UserProfileServlet. It extends AbstractServletHelper class.

· The constructor is a default constructor, which calls base class’s constructor.

· The determineAction method is overridden to implement the action logics that are specific for the UserProfileServlet.

· The setActionMembers method is also overridden to allow the servlet to set UserProfileBean to the helper.

OrderTrackingHelper (new classes): will take car of the logics in OrderTrackingServlet. It extends AbstractServletHelper class.

· The constructor is a default constructor, which calls base class’s constructor.

· The determineAction method is overridden to implement the action logics that are specific for the OrderTrackingServlet.

· The setActionMembers method is also overridden to allow the servlet to set OrderTrackingBean to the helper.

· There are more methods, such as sort methods, will be implemented later. They are not required in the ticket. The sort method will sort all orders in OMS database related to a user if the user enters his/her id (such has userId, email, etc).

CartBean (updated class): will implements the logics related to order submission, user request validation and HEG conversion stuff, etc. In synergy IV, the shopping cart provides users two kinds of orders – ftp-pull orders (for HEG conversion and packing) and physical media orders. The logics to submit these orders are different. Because of the backend (cart package) changes, the submit and submitOrder methods in CartBean will be modified with different signatures. The modifications will be explained in cart package.

MediaBean (new class): will implements the logics for media checking, creating the list of available media and generating the dynamic warning message, etc.

· There are a few lists of data members in this class that hold different kinds of media: defaultMedia, the list of all media – both ftp-pull and physical media; enabledMedia, the list of media available to the user; disabledMedia, the list of media unavailable to the user, the user can not select them because the user’s order exceeds the medium’s limits; largeMedia, list of media that can not be used by the user for his/her large order; smallMedia, list of media that can not be used by the user for his/her small order. The lists of largeMedia and smallMedia are used to construct the dynamic warning message.

· The constructor: set default data members.

· The setDefault method: set default empty lists

· The initDefaultMedia method: initialize the defaultMedia list dynamically via accessing the backend data access object.

· The populateMediaList method will check cart order against the media limits, populate enabledMedia, disabledMedia, largeMedia and smallMedia list.

· The getMedium method will return a Medium object given the medium type.

· The createWarningMsg method will generate warning message dynamically.

· The warningLowerLimit method will compute the minimum media warning size – the minimum media size minus some configurable warning amount. For example, suppose the minimum medium sizes for 3 media are: 20MB, 10MB and 5MB, and suppose that a DAAC wants to warn the user when the order is approaching to 1MB less than the minimum media size, then this method will return 5 - 1 = 4MB as the warning min limit.

· The warningUpperLimit and warning GranuleCount are similar methods to warningLowerLimit, but get the warning max limit and warning granule count limit.

· The checkMedia method will check media limits against user’s request and user’s order.

· The getDefaultMedia, getEnabledMedia and getDisabledMedia methods are used in templates to display these media.

· The getWarningMsg method used to display the warning message for the user.

· The setLog method is used to set a logWrapper object that log debug and error message.

· The get/setMediaWarningFlag method is used to communicate with the user to see if the warning page should always be displayed whenever a granule is added/removed to/from the cart. The user can turn off the warning page in the GUI.

UserAddress (new class): is a simple data object which holds user address information corresponding to MSS database. This class has many get/set methods for all address parameters – firstname, lastname, email, phone, organization, streets, city, state, zip, and country, etc.

UserProfileBean (new class): contains two kinds of user address: contactAddress and shippingAddress. There are get and set methods for each address. The isTheUser method will check user’s email address to see is the current user is the same user entered from the GUI.

OrderTrackingBean (new class): will implement the logics of checking the user, extracting order status and sort orders.

· The constructor will initialize the data members, such as order tracking data access object.

· The sort method will sort orders for a specific user.

· The validateUser method will check if the user is the owner of the order.

· The getTheOrder method will get the list all requests belonging to the order. One order manager order contains multi requests. One request contains one or more granules.

· The setLog method is used to set a log wrapper which logs debug and error message.

3.3.4 actions

[image: image17.wmf]Web Order Architecture Design

ECS GUEST

ECS GUEST

Web Drilldown

Shopping Cart

Order Tracking

DPL

DB

OMS

DB

Gets results

Adds granules

Searches data

Inputs user profile

and requests

Submits order

Acknowledges user

Extracts order status

For physical media

Inserts order request

Gets media limits

Removes granules

Checks media

type and limits

Order Manager

Gets order request

For ftp

-

pull or HEG order,

Insert order parameters

Check order status

HEG

Gets order parameters

Updates order status

Email user order status

Figure 14 actions package class diagram

The actions package includes classes processing the specific user’s action. All action class extedns the AbstractRequestAction, the base class which implements IRequestAction interface. The action class can throw a RequestActionException. The ActionFactory will create an action object in response to user’s request action, and throws UnknownActionTypeException if the user’s action is not configured. Most of shopping cart action classes extends CartAction class, which extends AbstractRequestAction, implements some specific logics for cart. All above classes are existing classes and will not be modified. We explained them here to show the class relationship in this package. There are four new classes and 2 update classes in this package. They are:

MediaAction (new class): will process user’s media related actions.

· The processRequest method implements the abstract method in the base class. It calls dispatch method to dispatch the user’s action to the corresponding methods.

· The showMedia method will show users the media page.

· The selectMedia method will process the user’s “select a medium” request.

· The confirmMedia method will process the request when the user confirms his/her media selection.

· The processNextAction will determine if there are another action should be processed by the same servlet.

SubmitOrderAction (updated class): used to process user’s submit request.

DisplayCartAction (updated class): used to display cart page. In the cart page, a ‘Remove-from-Cat’ icon can be clicked to remove a granule from the cart. The removeGranule method will be modified to check media due to the change of order cisze after the granule is removed.

UserProfileAction (new class): will process user’s profile related actions.

· The processRequest method implements the abstract method in the base class. It calls dispatch method to dispatch the user’s action to the corresponding methods.

· The showProfile method will show users the checkout page.

· The updateProfile method will update user profile.

· The processNextAction will determine if there are another action should be processed by the same servlet.

OrderTrackingAction (new class): is a base class for order tracking related classes. Currently only one action – AckOmOrderAction class extends it. We will add more action classes if we want to add more functionalities later in the order tracking GUI.

AckOmOrderAction (new class): will show the acknowledgement page in the web browser after the user submits the order. The displayOneOmOrder method is used to display the submitted order status and request status.

3.3.5 cart

[image: image18.png]Figure 15 cart package class diagram

Cart package implements the backend logics for the shopping cart. After the order manager order is introduced, we need to add four new classes and modified 3 existing classes. They are :

CartOrder (update interface): new get/set methods for media type, user string, metadataFlag are added in the interface. Another new method isOmOrder will check if the current order is order manager order (physical media order) or HEG order (ftp-pull order).

AbstractCartOrder (new class): In Synergy III, we implement the CartOrder interface using CartOrderImpl class. In Synergy IV, we should process both HEG order (ftp-pull order) and OMS order (physical media order). The AbstractCartOrder class implements the common methods for both kinds of orders. Although it’s a new class, most of its methods are reused from the original CartOrderImpl class.

· The insert method is an abstract method that should implemented in derived classes.

· The insertDB method implements a generic database insertion – this method gets insert stored procedure from configure file, it extracts the procedure’s input parameters, out parameters and their types from the configure file too. It then executes the procedure to insert order parameters into database, and get order status.

· The get/setMediumType methods are used for user’s request.

· The copy method works like a copy constructor. It deep-copies some data members in the abstract order object to initialize a specific ftp-pull order or physical media order.

· The isOmOrder is a method to decide if the current order is an OMS (physical media) order.

· The get/setMetadataFlag and get/setUserString methods are used to set user’s order information and used in templates.

· The getRequestId method returns OMS order’s requested for the template.

CartOrderImpl (updated class): will take care of the HEG (ftp-pull) order insertion to the DPL database. The insert method that implements the abstract method in the base class, will implements the detail logics of getting store procedure names, parameters, types, etc from the configure file, calling the insertDB method to insert database, and handle the transaction exception, etc.

OmOrderImpl (new class): will process the OMS (physical media order) order insertion. It also implements the insert method with the logics used for OMS order.

CartOrderGranule (updated class): we do a little change in this class – just add methods get/setEcsId, which are used for OMS order submission.

MediaDAO (new class): is a data access object class which accesses OMS database to extract media information dynamically. The getRealTimeMedia method will return the list of real time media in the OMS database.

Medium (new class): is a simple data object class that holds medium type, max size, min size and max granule count information. There are get/set methods for each of them.

3.3.6 ordertracking

[image: image19.png]Figure 16 ordertracking package class diagram

This package implements the backend logics for user’s order tracking. It’s a new package. Currently, this package only contains two classes which implements the simplest order tracking functionalities. Later, more classes will be added into this package for the enhanced order tacking GUI.

OmOrderDAO (new class): is a data access object class that will extract order status from OMS database.

· The constructor will get order tracking procedure name and needs column names from configure file. Because the OMS stored procedures are shared by a few applications, not all output columns are need for webaccess order tracking.

· The getOneOrder will extract the order status and request status in this order. It’s possible that one order contains multi requests. This method return the list of all request value object related to this order.

· The setLog method will set a log wrapper that logs debug and error message.

OmRequestValueObj (new class): is a simple value object class which holds OMS request information used to display for the user. The information includes fisrtname, lastname, email, orderID, requestID, userId (TBD), createDate (TBD), orderStatus, requestStatus and granuleStatus (TBD). There are get/set methods for each of them.

3.3.7 util

[image: image20.png]Figure 17 util package class diagram

Only one class in util package is modified.

RequestHelper (updated class): is a static class providing common request process methods. A createServletRef method is added into this class to generate the servlet response encoded url. This method is used for the servlet reference url rewriting.

Sequence Diagrams

3.3.8 Check media

[image: image13.png]
Figure 18 Sequence: check media when the user add a granule into cart
Set user profile

[image: image14.png]
Figure 19 Sequence: set or update user profile

3.3.9 Submit order

[image: image15.png]
Figure 20 submit physical media order

4 Database Schema

4.1 Overview

Webaccess will communicate with OMS via database interface. Webaccess get media information and order status using OMS stored procedures. It also insert order parameters into OMS database using other procedures.

4.2 Database Operations

This section describes the database operations that will be required to support this capability.

4.2.1 DPL database

	Proc Name
	Description
	Notes

	ProcGetGranuleSummary
	Get granule summary information for the one step search. This procedure will be modified to get granule’s esdt (shortname+versionId) and ecsId for the use in Order Manager Service.
	

	ProcGetTempGranuleSummary
	Get granule summary information for the general search. This procedure will be modified to get granule’s esdt (shortname+versioned) and ecsId for the use in Order Manager Service.
	

4.2.2 OMS database

	Proc Name
	Description
	Notes

	GetMediaInfo
	Get distribution media information and limits.

Input: None

Output: mediaType, MaxMediaSize (MB), minMediaSize (MB), maxGranCount, ……
	Will be shared by both webaccess and OMS applications.

	SubmitOrder
	Insert order parameters into OMS database.

Input: contact address, shipping address, nullBilling address, userString, mediaType, metadataFlag, source (DPL)

Output: orderId, requestId, status
	Used by webaccess only.

The status should be “Submitted”

	submitGranule
	Insert granule parameters into OMS database.

Input: requested, ecsId, dp_id (granuleId), esdtType (shortname_versioned), granuleSizeMB (science+metadata), granSource(A,C,D)

Output: status (0 means success submissiom)
	Shared by both webaccess and OMS applications

	InsertOmFile
	Insert granule file parameters into OMS database.

Input: requested, ecsId, dp_id (granuleId), fileType(M,S), directoryPath, filename, filesize

Output: status (0 means success submission)
	Used by webaccess only

	GetOrderStatus
	Validate if the user is the owner of the retrieved order. If yes, get order status, request status (translated), etc.

Input: ordered, email, firstname, lastname

Output: order status, request status (translated), creationTime, lastUpdateetc

	The translated status include: Submitted, InProgress, Queued, Shipped, Failed.

A performance test had been done by OMS DDM group, which shows that using long string as procedure’s input parameters would be faster than a batch execution of procedures with short strings. For example, we can create a procedure like

InsMultipleGrans (granuleIds varchar(1000), granSize varchar(1000), esdtType varchar(1000), ….)

The execution of this procedure like

EXEC InsMultipleGrans (“12|14|…|20”, “12.0|5.6|…|6.0”, “ASTER|MISR|…|DPREP”, ….)

would be much faster than the execution of

BATCH EXEC submitGranule(12, 12.0, “ASTER”, …), submitGranule(14, 5.6, “MISR”, …), ……, submitGranule(20, 6.0, “DPREP”,…..)

This option needs to be discussed. The detail design will depends on the procedure’s design.

To use this option, webaccess requires a few assumptions:

1. The max length of string in Sybase procedure argument should be configured.

2. It’s possible that webaccess will still call the procedure several times if there are too many granules in an order (the long parameter strings can not include all granules in one procedure).

3. All procedure calls for one order should be completed in one transaction.

5 SLOC Estimates

The current design will require 19 new classes, 11 update classes for a total of about 1700 lines of java code. It will also require about 300 lines of new templates in the GUI. The DPL procedure requires 10 lines update. The total SLOC is 2010.

The OMS database needs SLOC for new stored procedures and updated existing procedures. The OMS DDM staff will provide the SLOC estimate for them.

6 Test Plan & Procedures

	Integration Test Plan for Webaccess Support of Media Distribution

	Int Test Plan No.: OD_S4_01
	Test Author: Di Kang

	Title:
	WebAccess Support of Media Distribution

	CapId / NCR:
	OD_S4_01

	Objective:
	To verify the Web media order submission to Order Manager.

	L4 ID
	Verification Method
	L4 Text

	S-DPL-x1010
	Test
	The Data Pool Web Access Service shall allow users to order the granules in the shopping cart for distribution via any of the physical media offered by ECS.

[NOTE: this is not intended to extend to HEG orders. They will continue to be available only via FTP.]

	S-DPL-x1020
	Test
	The Data Pool Web Access Service shall allow the user to include in or exclude from the order the XML metadata files for the granules in the shopping cart.

	S-DPL-x1030
	Test
	The Data Pool Web Access Service shall require the user to enter an e-mail address of a maximum length of TBD characters for the order.

[Note: Maximum length to be resolved during preliminary design.]

	S-DPL-x1040
	Test
	The Data Pool Web Access Service shall allow the user to provide a contact address for the order, compatible with the corresponding MSS data elements.

	S-DPL-x1050
	Test
	The Data Pool Web Access Service shall allow the user to provide a string of a maximum length of 255 characters as identification or characterization of the order.

[Note: This will be used to fill the Userstring parameter that is available for each order, and will be included in the Distribution Notice associated with the order.]

	S-DPL-x1060
	Test
	The Data Pool Web Access Service shall assume a distribution priority of NORMAL for the order.

	S-DPL-x1070
	Test
	The Data Pool Web Access Service shall allow the user to select a valid ECS physical media type for the order.

	S-DPL-x1080
	Test
	The Data Pool Web Access Service shall require the user to provide the shipping information for the order, compatible with the corresponding MSS data elements.

	S-DPL-x1090
	Test
	The Data Pool Web Access Service shall warn the user if the distribution request exceeds any of the configured request limits.

	S-DPL-x1095
	Test
	The Data Pool Web Access Service shall make media types unavailable as choices if the contents of the shopping cart exceed one of their request limits (e.g., media too small or order exceeds maximum order size for that media type).

[Note: This could result in no media type being available if the order is too large.]

	S-DPL-x1096
	Test
	The Data Pool Web Access Service shall make media types unavailable as choices if the contents of the shopping cart is less than the minimum request size for that media type (i.e., request is too small).

[Note: This could result in no media type being available if the order is too small. This also will require the addition of a “Minimum Request Size” configuration parameter for each media type.]

	S-DPL-x1098
	Test
	The Data Pool Web Access Service shall verify that all granules in a shopping cart are still in the Data Pool before submitting the order, and not submit the order and return an appropriate error indication flagging the unavailable granule(s) if that is the case.

	S-DPL-x1100
	Test
	The Data Pool Web Access Service shall submit a data distribution request for the ordered granules and files to the OMS Database.

[Note: The interface must employ the OMS stored procedures for request submission.]

	S-DPL-x1110
	Test
	The Data Pool Web Access Service shall empty the shopping cart after the data distribution request was successfully submitted to the OMS Database.

	S-DPL-x1120
	Test
	The Data Pool Web Access Service shall display the assigned MSS order ID and the order status to the user after the data distribution request was successfully submitted to the OMS Database.

	S-DPL-x1130
	Test
	The Data Pool Web Access Service shall permit a user to obtain the current status of an order in a form that is meaningful to the user.

[Note: The last phrase means that there needs to be a translation from MSS states to the status displayed to the user. The mapping from MSS state to status values displayed to a user is TBD by the preliminary design. Candidate values are: QUEUED; IN PROGRESS; SHIPPED; FAILED.

It was agreed that the user would need to provide an order Id and for verification purposes, a matching Email address to obtain the order status.]

	S-DPL-x1140
	Test
	The Data Pool Web Access Service shall permit a user to bookmark the page displaying the order ID and status such that the user can use the bookmark later to obtain a current status of the order.

	S-DPL-x1160
	Test
	The Data Pool Web Access Service shall display a meaningful error message to the user if the submission of the order into the OMS Database failed.

[Note: The error messages must be reviewed with the DAACs during preliminary design]

	S-DPL-x1170
	Test
	The Data Pool Web Access Service shall allow a user to resubmit an order for a shopping cart if the submission of the order to the OMS Database failed.

	S-DPL-x1180
	Test
	When re-submitting a data distribution request, the Data Pool Web Access Service shall guard against duplicate order submission by employing the corresponding capability of the Order Management Service.

	S-DPL-x1200
	Test
	The Data Pool Web Access Service shall exclude order only data from all web drill down results.

[Note: The requirement is satisfied by virtue of not populating the Data Pool inventory data that are used by drill down searches during insert of order only data.]

6.1 Criteria:

	Ticket ID
	Type
	Criteria ID
	 Criteria Text

	OD_S4_01
	FC
	110
	For each type of physical media, perform a drill down and add at least five granules to the shopping cart, then order the shopping cart for distribution via that media type. Using differing distribution options on each submission, verify the following:

a. The order is submitted as an ECSGuest order an with a priority of NORMAL.

b. The user must enter a contact e-mail address.

c. The length of the e-mail address cannot exceed the maximum length.

d. The user can enter a contact address.

e. A Userstring can be entered or omitted, and the Userstring cannot exceed the maximum length.

f. The use must enter a shipping address unless the user entered a contact address and indicates that it is the same for the shipping address..

g. The user can request inclusions and omission of the XML files.

h. A data distribution request is submitted to the Order Management Service that contains the correct granules, files and size information.

i. The Web GUI displays the order and request ID to the user, as well as the order status.

j. The page can be bookmarked and accessed later to obtain the order status by entering the order ID and e-mail address provided during ordering as contact address.

k. The shopping cart is empty after the order was submitted.

l. The requests are correctly submitted to the PDS, do not cause staging requests to ECS, and are correctly distributed by the PDS.

	OD_S4_01
	EC
	122
	Use the DPL Web GUI to order the contents of a shopping cart that exceeds the configured request limit for the number of granules but does not violate any other limits. Verify that the DPL Web GUI provides a warning but that the request can be submitted in any case.

	OD_S4_01
	EC
	124
	Configure the minimum and maximum request sizes differently for each physical media type. Populate a shopping cart and use the DPL Web GUI to attempt to order it for each media type once while the shopping cart contains less than the configured minimum order size for that media type, then again while the size of the cart is within the valid range, and finally while exceeding that maximum order size (note that it is not necessary to actually submit these orders). Verify that the DPL Web GUI offers the media type as order choice in the second case, but not in the other cases, and that the DPL Web GUI provides an indication as to why the media choices are not available.

	OD_S4_01
	EC
	125
	For each physical media type, configure a different capacity limit such that each is less than the size of some granules in the Data Pool. Then use the DPL Web GUI to populate the contents of a shopping cart with granules such that at least one of them exceeds the capacity limit for a given media type. Attempt to order the shopping cart. Verify that the DPL Web GUI does not offer the media type as order choice and provides an indication as to why the media choice is not available. Then remove the offending granule(s) from the shopping cart and verify that the media type is now available as an order choice. Repeat this test for each physical media type.

	OD_S4_01
	EC
	126
	Use the DPL Web GUI to populate a shopping cart with data pool granules such that at least one but not all of them can be cleaned up without affecting the others. Then perform a cleanup run that removes these granules. After completion of the cleanup run, try to order the shopping cart. Verify that the DPL Web GUI does not submit the order and provides an appropriate explanation to the user, flagging the unavailable granule(s).

	Test Input Data:
	· The test criteria assume a populated Data Pool and corresponding Data Pool inventory.
· The input data should include granules with science.

· Any ESDT is okay for testing this capability.

	Data Set Name/Version
	Description
	Location

	All or any; see test input above.
	· See above
	Data Pool Inventory

	Test Output:
	· See individual ticket criteria

	Data Set Name
	Description
	Location

	All or any; see test output above.
	GUI pages displayed for the web users
	Webaccess GUI

	All or any; see test output above.
	OMS or ECS tables could beupdated.
	OMS database

08/04/03
ii

